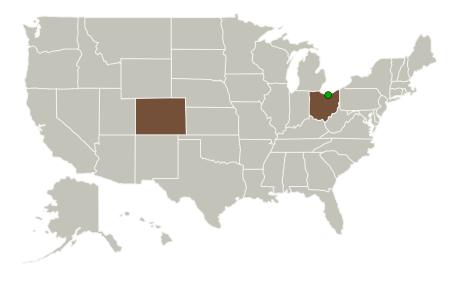
Small Business Innovation Research/Small Business Tech Transfer

Advanced Particle-in-Cell (PIC) Tools for Simulation of Electrodynamic Tether Plasma Interactions, Phase I



Completed Technology Project (2011 - 2012)

Project Introduction

Electrodynamic tethers are optimally suited for use in Low-Earth-Orbit (LEO) to generate thrust or drag maneuver satellites. LEO region is polluted with space debris from the left over of rockets and abandoned satellites. It becomes important to clean them, i.e., de-orbit and ED tethers are promising for such applications. ED tethers are operating without propellants, so less polluting in our space and also cost-efficient. Tether powered satellites can operate in dual mode (thrust or power generation). Advanced PIC tools can perform self-consistent 2-D and 3-D tether simulations to study the plasma interactions and will improve the understanding of the self-induced magnetic field effects on the current collection ability of these ED tethers. These tools once validated using tether ribbon tape experiments can help NASA researchers to analyze various tether geometries in efforts to optimize tether design for space missions on a wide range of operating conditions.

Primary U.S. Work Locations and Key Partners

Advanced Particle-in-Cell (PIC) Tools for Simulation of Electrodynamic Tether Plasma Interactions, Phase I

Table of Contents

Primary U.S. Work Locations	
and Key Partners	1
Project Transitions 2	2
Organizational Responsibility 2	2
Project Management 2	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Advanced Particle-in-Cell (PIC) Tools for Simulation of Electrodynamic Tether Plasma Interactions, Phase I

Completed Technology Project (2011 - 2012)

Organizations Performing Work	Role	Туре	Location
Tech-X Corporation	Lead Organization	Industry	Boulder, Colorado
Colorado State University-Fort Collins	Supporting Organization	Academia	Fort Collins, Colorado
Glenn Research Center(GRC)	Supporting Organization	NASA Center	Cleveland, Ohio

Primary U.S. Work Locations	
Colorado	Ohio

Project Transitions

February 2011: Project Start

February 2012: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/137969)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Tech-X Corporation

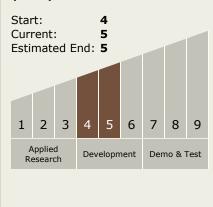
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Sudhakar Mahalingam

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Advanced Particle-in-Cell (PIC) Tools for Simulation of Electrodynamic Tether Plasma Interactions, Phase I

Completed Technology Project (2011 - 2012)

Technology Areas

Primary:

- TX01 Propulsion Systems
 TX01.4 Advanced
 Propulsion
 TX01.4.2
 Electromagnetic
 Tethers
- **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

